57 research outputs found

    Hierarchy Flow For High-Fidelity Image-to-Image Translation

    Full text link
    Image-to-image (I2I) translation comprises a wide spectrum of tasks. Here we divide this problem into three levels: strong-fidelity translation, normal-fidelity translation, and weak-fidelity translation, indicating the extent to which the content of the original image is preserved. Although existing methods achieve good performance in weak-fidelity translation, they fail to fully preserve the content in both strong- and normal-fidelity tasks, e.g. sim2real, style transfer and low-level vision. In this work, we propose Hierarchy Flow, a novel flow-based model to achieve better content preservation during translation. Specifically, 1) we first unveil the drawbacks of standard flow-based models when applied to I2I translation. 2) Next, we propose a new design, namely hierarchical coupling for reversible feature transformation and multi-scale modeling, to constitute Hierarchy Flow. 3) Finally, we present a dedicated aligned-style loss for a better trade-off between content preservation and stylization during translation. Extensive experiments on a wide range of I2I translation benchmarks demonstrate that our approach achieves state-of-the-art performance, with convincing advantages in both strong- and normal-fidelity tasks. Code and models will be at https://github.com/WeichenFan/HierarchyFlow.Comment: arXiv admin note: text overlap with arXiv:2207.0190

    Characteristics and candidate genes associated with excellent stalk strength in maize (Zea mays L.)

    Get PDF
    Lodging is a major problem in maize production, which seriously affects yield and hinders mechanized harvesting. Improving stalk strength is an effective way to improve lodging. The maize inbred line Jing2416 (J2416) was an elite germplasm in maize breeding which had strong stalk mechanical strength. To explore the characteristics its stalk strength, we conducted physiological, metabolic and transcriptomic analyses of J2416 and its parents Jing24 (J24) and 5237. At the kernel dent stage, the stalk rind penetrometer strength of J2416 was significantly higher than those of its two parents in multiple environments. The rind thickness, sclerenchyma tissue thickness, and cellulose, hemicellulose, and lignin contents of J2416 were significantly higher than those of its parents. Based on the significant differences between J2416 and 5237, we detected metabolites and gene transcripts showing differences in abundance between these two materials. A total of 212 (68.60%) metabolites and 2287 (43.34%) genes were up-regulated in J2416 compared with 5237. The phenylpropanoid and glycan synthesis/metabolism pathways were enriched in metabolites and genes that were up-regulated in J2416. Twenty-eight of the up-regulated genes in J2416 were involved in lignin, cellulose, and hemicellulose synthesis pathways. These analyses have revealed important physiological characteristics and candidate genes that will be useful for research and breeding of inbred lines with excellent stalk strength

    Association of Aortic Stiffness and Cognitive Decline: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Increased aortic stiffness has been found to be associated with cognitive function decline, but the evidence is still under debate. It is of great significance to elucidate the evidence in this debate to help make primary prevention decisions to slow cognitive decline in our routine clinical practice.Methods: Electronic databases of PubMed, EMBASE, and Cochrane Library were systematically searched to identify peer-reviewed articles published in English from January 1, 1986, to March 16, 2020, that reported the association between aortic stiffness and cognitive function. Studies that reported the association between aortic pulse wave velocity (PWV) and cognitive function, cognitive impairment, and dementia were included in the analysis.Results: Thirty-nine studies were included in the qualitative analysis, and 29 studies were included in the quantitative analysis. The aortic PWV was inversely associated with memory and processing speed in the cross-sectional analysis. In the longitudinal analysis, the high category of aortic PWV was 44% increased risk of cognitive impairment (OR 1.44; 95% CI 1.24ā€“1.85) compared with low PWV, and the risk of cognitive impairment increased 3.9% (OR 1.039; 95% CI 1.005ā€“1.073) per 1 m/s increase in aortic PWV. Besides, meta-regression analysis showed that age significantly increased the association between high aortic PWV and cognitive impairment risk.Conclusion: Aortic stiffness measured by aortic PWV was inversely associated with memory and processing speed and could be an independent predictor for cognitive impairment, especially for older individuals

    Design of motion system for autonomous driving vehicles

    No full text
    This project aims to design a motion system for autonomous driving vehicles. The motion system is consist of two subsystems, a motion planner and a motion controller. The planner handles decision making and path planning to generate trajectory with waypoints; the controller controls the vehicle to track planned trajectory via throttle, steer and brake commands. This project implements and tests with both traditional method and learning-based method. The designed system is evaluated and verified on CARLA simulator, under various driving scenarios in urban environment.Bachelor of Engineering (Electrical and Electronic Engineering

    A reconfigurable FPGA-based readback signal generator for hard-drive read channel simulator

    Full text link

    Effect of Small Molecular Organic Acids on the Structure and Catalytic Performance of Solā€“Gel Prepared Cobalt Cerium Oxides towards Toluene Combustion

    No full text
    Cobalt cerium oxide catalysts with small molecular organic acids (SOAs) as chelating agents were prepared via the sol–gel method and investigated for the complete oxidation of toluene. Four kinds of natural SOAs, i.e. malic acid (MA), citric acid (CA), glycolic acid (GA), and tartaric acid (TA), were selected. The effect of organic acids on the composition, structure, morphology and catalytic performance of metal oxides is discussed in details. The cobalt cerium oxides catalysts were characterized by various techniques, including TG–DSC, XRD, SEM–EDS, N2–adsorption and desorption, XPS, and H2–TPR analyses. The results show that the nature of organic acids influenced the hydrolysis, condensation and calcination processes, as well as strongly affected the textural and physicochemical properties of the metal oxides synthesized. The best catalytic activity was obtained with the CoCe–MA catalyst, and the toluene conversion reached 90% at 242 °C. This outstanding catalytic activity could be related to its textural, redox properties and unique surface compositions and oxidation states. In addition, the CoCe–MA catalyst also showed excellent stability in long–time activity test
    • ā€¦
    corecore